Separation of v-Src-induced mitogenesis and morphological transformation by inhibition of AP-1.

Author:

Frame M C1,Simpson K1,Fincham V J1,Crouch D H1

Affiliation:

1. Beatson Institute for Cancer Research, Beatson Laboratories, Bearsden, Glasgow, United Kingdom.

Abstract

v-Src activity results in both morphological transformation and reentry of quiescent chick embryo fibroblasts (CEF) into cell cycle. We have previously used temperature-sensitive v-Src mutants to show that enhanced activity of cellular AP-1 in the first few hours after activation of v-Src invariably precedes the biological consequences. Here we have investigated whether the early activation of AP-1 is essential for any or all of the v-Src responses by using a mutant c-Fos that comprises the leucine zipper and a disrupted basic region. Expression of the c-Fos mutant partially reduced cellular AP-1 activity in exponentially growing cells. However, in CEF that had been made quiescent by serum deprivation, v-Src-induced stimulation of AP-1 DNA binding activity was substantially reduced. In addition, quiescent CEF stably transfected with this mutant show an impaired mitogenic response to v-Src, indicating that the AP-1 stimulation is a necessary prerequisite for cell-cycle reentry. The ability of v-Src to morphologically transform quiescent CEF was not impaired by the inhibition of AP-1 stimulation, indicating that the mitogenic and morphological consequences of v-Src have distinguishable biochemical mediators. Focal adhesion kinase, a recently identified determinant of cell morphology, undergoes a gel mobility shift, characteristic of its hyperphosphorylated state, in response to v-Src activation in cells expressing the inhibitory AP-1 protein. This provides further evidence that the pathways that regulate morphological transformation are independent of AP-1.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3