Serial Analysis of Gene Expression in Plasmodium falciparum Reveals the Global Expression Profile of Erythrocytic Stages and the Presence of Anti-Sense Transcripts in the Malarial Parasite

Author:

Patankar Swati1,Munasinghe Anusha1,Shoaibi Azadeh2,Cummings Leda M.2,Wirth Dyann F.1

Affiliation:

1. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Harvard University, Boston, Massachusetts 02115; and

2. The Institute for Genomic Research, Rockville, Maryland 20850

Abstract

Serial analysis of gene expression (SAGE) was applied to the malarial parasite Plasmodium falciparum to characterize the comprehensive transcriptional profile of erythrocytic stages. A SAGE library of ∼8335 tags representing 4866 different genes was generated from 3D7 strain parasites. Basic local alignment search tool analysis of high abundance SAGE tags revealed that a majority (88%) corresponded to 3D7 sequence, and despite the low complexity of the genome, 70% of these highly abundant tags matched unique loci. Characterization of these suggested the major metabolic pathways that are used by the organism under normal culture conditions. Furthermore several tags expressed at high abundance (30% of tags matching to unique loci of the 3D7 genome) were derived from previously uncharacterized open reading frames, demonstrating the use of SAGE in genome annotation. The open platform “profiling” nature of SAGE also lead to the important discovery of a novel transcriptional phenomenon in the malarial pathogen: a significant number of highly abundant tags that were derived from annotated genes (17%) corresponded to antisense transcripts. These SAGE data were validated by two independent means, strand specific reverse transcription-polymerase chain reaction and Northern analysis, where antisense messages were detected in both asexual and sexual stages. This finding has implications for transcriptional regulation ofPlasmodium gene expression.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3