The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p

Author:

De Smet Cedric H.1,Vittone Elisa1,Scherer Max2,Houweling Martin3,Liebisch Gerhard2,Brouwers Jos F.3,de Kroon Anton I.P.M.1

Affiliation:

1. Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, Netherlands

2. Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, D-93042 Regensburg, Germany

3. Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, Netherlands

Abstract

The degree of fatty acid unsaturation, that is, the ratio of unsaturated versus saturated fatty acyl chains, determines membrane fluidity. Regulation of expression of the fatty acid desaturase Ole1p was hitherto the only known mechanism governing the degree of fatty acid unsaturation in Saccharomyces cerevisiae. We report a novel mechanism for the regulation of fatty acid desaturation that is based on competition between Ole1p and the glycerol-3-phosphate acyltransferase Sct1p/Gat2p for the common substrate C16:0-CoA. Deletion of SCT1 decreases the content of saturated fatty acids, whereas overexpression of SCT1 dramatically decreases the desaturation of fatty acids and affects phospholipid composition. Whereas overexpression of Ole1p increases desaturation, co-overexpression of Ole1p and Sct1p results in a fatty acid composition intermediate between those obtained upon overexpression of the enzymes separately. On the basis of these results, we propose that Sct1p sequesters C16:0-CoA into lipids, thereby shielding it from desaturation by Ole1p. Ta­king advantage of the growth defect conferred by overexpressing SCT1, we identified the acyltransferase Cst26p/Psi1p as a regulator of Sct1p activity by affecting the phosphorylation state and overexpression level of Sct1p. The level of Sct1p phosphorylation is increased when cells are supplemented with saturated fatty acids, demonstrating the physiological relevance of our findings.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3