Ubiquitination-dependent quality control of hERG K+ channel with acquired and inherited conformational defect at the plasma membrane

Author:

Apaja Pirjo M.1,Foo Brian1,Okiyoneda Tsukasa1,Valinsky William C.1,Barriere Herve1,Atanasiu Roxana1,Ficker Eckhard1,Lukacs Gergely L.1,Shrier Alvin1

Affiliation:

1. Department of Physiology and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC H3E 1Y6, Canada

Abstract

Membrane trafficking in concert with the peripheral quality control machinery plays a critical role in preserving plasma membrane (PM) protein homeostasis. Unfortunately, the peripheral quality control may also dispose of partially or transiently unfolded polypeptides and thereby contribute to the loss-of-expression phenotype of conformational diseases. Defective functional PM expression of the human ether-a-go-go–related gene (hERG) K+ channel leads to the prolongation of the ventricular action potential that causes long QT syndrome 2 (LQT2), with increased propensity for arrhythmia and sudden cardiac arrest. LQT2 syndrome is attributed to channel biosynthetic processing defects due to mutation, drug-induced misfolding, or direct channel blockade. Here we provide evidence that a peripheral quality control mechanism can contribute to development of the LQT2 syndrome. We show that PM hERG structural and metabolic stability is compromised by the reduction of extracellular or intracellular K+ concentration. Cardiac glycoside–induced intracellular K+ depletion conformationally impairs the complex-glycosylated channel, which provokes chaperone- and C-terminal Hsp70-interacting protein–dependent polyubiquitination, accelerated internalization, and endosomal sorting complex required for transport–dependent lysosomal degradation. A similar mechanism contributes to the down-regulation of PM hERG harboring LQT2 missense mutations, with incomplete secretion defect. These results suggest that PM quality control plays a determining role in the loss-of-expression phenotype of hERG in certain hereditary and acquired LTQ2 syndromes.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3