Methionine Sulfoxide Reduction in Mammals: Characterization of Methionine-R-Sulfoxide Reductases

Author:

Kim Hwa-Young1,Gladyshev Vadim N.1

Affiliation:

1. Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588

Abstract

Methionine residues in proteins are susceptible to oxidation by reactive oxygen species, but can be repaired via reduction of the resulting methionine sulfoxides by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). However, the identity of all methionine sulfoxide reductases involved, their cellular locations and relative contributions to the overall pathway are poorly understood. Here, we describe a methionine-R-sulfoxide reduction system in mammals, in which two MsrB homologues were previously described. We found that human and mouse genomes possess three MsrB genes and characterized their protein products, designated MsrB1, MsrB2, and MsrB3. MsrB1 (Selenoprotein R) was present in the cytosol and nucleus and exhibited the highest methionine-R-sulfoxide reductase activity because of the presence of selenocysteine (Sec) in its active site. Other mammalian MsrBs contained cysteine in place of Sec and were less catalytically efficient. MsrB2 (CBS-1) resided in mitochondria. It had high affinity for methionine-R-sulfoxide, but was inhibited by higher concentrations of the substrate. The human MsrB3 gene gave rise to two protein forms, MsrB3A and MsrB3B. These were generated by alternative splicing that introduced contrasting N-terminal and C-terminal signals, such that MsrB3A was targeted to the endoplasmic reticulum and MsrB3B to mitochondria. We found that only mitochondrial forms of mammalian MsrBs (MsrB2 and MsrB3B) could compensate for MsrA and MsrB deficiency in yeast. All mammalian MsrBs belonged to a group of zinc-containing proteins. The multiplicity of MsrBs contrasted with the presence of a single mammalian MsrA gene as well as with the occurrence of single MsrA and MsrB genes in yeast, fruit flies, and nematodes. The data suggested that different cellular compartments in mammals maintain a system for repair of oxidized methionine residues and that this function is tuned in enzyme- and stereo-specific manner.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 269 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3