The evolution and diversity of actin-dependent cell migration

Author:

Fritz-Laylin Lillian K.1,Titus Margaret A.2

Affiliation:

1. Department of Biology, University of Massachusetts, Amherst, MA 01003

2. Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455

Abstract

Many eukaryotic cells, including animal cells and unicellular amoebae, use dynamic-actin networks to crawl across solid surfaces. Recent discoveries of actin-dependent crawling in additional lineages have sparked interest in understanding how and when this type of motility evolved. Tracing the evolution of cell crawling requires understanding the molecular mechanisms underlying motility. Here we outline what is known about the diversity and evolution of the molecular mechanisms that drive cell motility, with a focus on actin-dependent crawling. Classic studies and recent work have revealed a surprising number of distinct mechanical modes of actin-dependent crawling used by different cell types and species to navigate different environments. The overlap in actin network regulators driving multiple types of actin-dependent crawling, along with cortical-actin networks that support the plasma membrane in these cells, suggest that actin motility and cortical actin networks might have a common evolutionary origin. The rapid development of additional evolutionarily diverse model systems, advanced imaging technologies, and CRISPR-based genetic tools, is opening the door to testing these and other new ideas about the evolution of actin-dependent cell crawling.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3