Dynamin Regulates Focal Exocytosis in Phagocytosing Macrophages

Author:

Di Anke1,Nelson Deborah J.1,Bindokas Vytautas1,Brown Mary E.1,Libunao Frances1,Palfrey H. Clive1

Affiliation:

1. Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637

Abstract

Phagocytosis in macrophages is thought to involve insertion of cytoplasmic vesicles at sites of membrane expansion before particle ingestion (“focal” exocytosis). Capacitance (Cm) measurements of cell surface area were biphasic, with an initial rise indicative of exocytosis followed by a fall upon phagocytosis. Unlike other types of regulated exocytosis, the Cm rise was insensitive to intracellular Ca2+, but was inhibited by guanosine 5′-O-(2-thio)diphosphate. Particle uptake, but not Cm rise, was affected by phosphatidylinositol 3-kinase inhibitors. Inhibition of actin polymerization eliminated the Cm rise, suggesting possible coordination between actin polymerization and focal exocytosis. Introduction of anti-pan-dynamin IgG blocked Cm changes, suggesting that dynamin controls focal exocytosis and thereby phagocytosis. Similarly, recombinant glutathione S-transferase•amphiphysin-SH3 domain, but not a mutated form that cannot bind to dynamin, inhibited both focal exocytosis and phagocytosis. Immunochemical analysis of endogenous dynamin distribution in macrophages revealed a substantial particulate pool, some of which localized to a presumptive endosomal compartment. Expression of enhanced green fluorescent protein•dynamin-2 showed a motile dynamin pool, a fraction of which migrated toward and within the phagosomal cup. These results suggest that dynamin is involved in the production and/or movement of vesicles from an intracellular organelle to the cell surface to support membrane expansion around the engulfed particle.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3