Affiliation:
1. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620; and
2. Departments of Cell Biology and Immunology, Scripps Research Institute, La Jolla, California 92037
Abstract
Particle ingestion by phagocytosis results from sequential rearrangements of the actin cytoskeleton and overlying membrane. To assemble a chronology of molecular events during phagosome formation and to examine the contributions of phosphoinositide 3-kinase (PI 3-kinase) to these dynamics, a method was developed for synchronizing Fcγ receptor-mediated phagocytosis by murine macrophages. Erythrocytes opsonized with complement component C3bi were bound to macrophages at 37°C, a condition that does not favor particle phagocytosis. Addition of soluble anti-erythrocyte IgG resulted in rapid opsonization of the bound erythrocytes, followed by their immediate internalization via phagocytosis. Cellular content of F-actin, as measured by binding of rhodamine-phalloidin, increased transiently during phagocytosis, and this increase was not diminished by inhibitors of PI 3-kinase. Immunofluorescence localization of myosins in macrophages fixed at various times during phagocytosis indicated that myosins II and IXb were concentrated in early phagosomes, myosin IC increased later, and myosin V appeared after phagosome closure. Other cytoskeletal proteins showed similar variations in the timing of their appearance in phagosomes. The PI 3-kinase inhibitor wortmannin did not change the dynamics of PI 3-kinase or ezrin localization but prevented the loss of PAK1 from phagosomes. These results suggest that PI 3-kinase deactivates PAK1, and that this may be needed for phagosome closure.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献