The Ccr4–Not Deadenylase Subunits CNOT7 and CNOT8 Have Overlapping Roles and Modulate Cell Proliferation

Author:

Aslam Akhmed1,Mittal Saloni1,Koch Frederic2,Andrau Jean-Christophe2,Winkler G. Sebastiaan1

Affiliation:

1. *The School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom; and

2. Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, CNRS UMR6102, Institut National de la Santé et de la Recherche Médicale U631, 13288 Marseille, France

Abstract

Accurate gene expression requires the precise control of mRNA levels, which are determined by the relative rates of nuclear (pre-)mRNA synthesis and processing, and cytoplasmic mRNA turnover. A key step in mRNA degradation is the removal of the poly(A) tail, which involves several deadenylases including components of the Ccr4–Not complex. Here, we focused on the role of the human paralogues CNOT7 (hCaf1/Caf1a) and CNOT8 (hPop2/Caf1b/Calif), which possess deadenylase activity mediated by DEDD nuclease domains. We show that efficient proliferation requires both subunits, although combined knockdown of CNOT7 and CNOT8 further reduces cell proliferation indicating partial redundancy between these proteins. Interestingly, the function of CNOT7 in cell proliferation partly depends on its catalytic activity. On the other hand, the interaction between CNOT7 and BTG2, a member of the antiproliferative BTG/Tob family involved in transcription and mRNA decay appears less important for proliferation of MCF7 cells, suggesting that CNOT7 does not function solely in conjunction with BTG2. Further analysis of gene expression profiles of CNOT7 and/or CNOT8 knockdown cells underscores the partial redundancy between these subunits and suggests that regulation of several genes, including repression of the antiproliferative genes MSMB and PMP22, by the Ccr4–Not complex contributes to cell proliferation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3