Dephosphorylation of Cell Cycle–regulated Proteins Correlates with Anoxia-induced Suspended Animation inCaenorhabditis elegans

Author:

Padilla Pamela A.1,Nystul Todd G.12,Zager Richard A.3,Johnson Ali C.M.3,Roth Mark B.12

Affiliation:

1. Division of Basic Sciences,

2. Molecular and Cellular Biology Program,

3. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109

Abstract

Some metazoans have evolved the capacity to survive severe oxygen deprivation. The nematode, Caenorhabditis elegans, exposed to anoxia (0 kPa, 0% O2) enters into a recoverable state of suspended animation during all stages of the life cycle. That is, all microscopically observable movement ceases including cell division, developmental progression, feeding, and motility. To understand suspended animation, we compared oxygen-deprived embryos to nontreated embryos in both wild-type and hif-1 mutants. We found that hif-1 mutants survive anoxia, suggesting that the mechanisms for anoxia survival are different from those required for hypoxia. Examination of wild-type embryos exposed to anoxia show that blastomeres arrest in interphase, prophase, metaphase, and telophase but not anaphase. Analysis of the energetic state of anoxic embryos indicated a reversible depression in the ATP to ADP ratio. Given that a decrease in ATP concentrations likely affects a variety of cellular processes, including signal transduction, we compared the phosphorylation state of several proteins in anoxic embryos and normoxic embryos. We found that the phosphorylation state of histone H3 and cell cycle–regulated proteins recognized by the MPM-2 antibody were not detectable in anoxic embryos. Thus, dephosphorylation of specific proteins correlate with the establishment and/or maintenance of a state of anoxia-induced suspended animation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3