Affiliation:
1. Division of Basic Sciences,
2. Molecular and Cellular Biology Program,
3. Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
Abstract
Some metazoans have evolved the capacity to survive severe oxygen deprivation. The nematode, Caenorhabditis elegans, exposed to anoxia (0 kPa, 0% O2) enters into a recoverable state of suspended animation during all stages of the life cycle. That is, all microscopically observable movement ceases including cell division, developmental progression, feeding, and motility. To understand suspended animation, we compared oxygen-deprived embryos to nontreated embryos in both wild-type and hif-1 mutants. We found that hif-1 mutants survive anoxia, suggesting that the mechanisms for anoxia survival are different from those required for hypoxia. Examination of wild-type embryos exposed to anoxia show that blastomeres arrest in interphase, prophase, metaphase, and telophase but not anaphase. Analysis of the energetic state of anoxic embryos indicated a reversible depression in the ATP to ADP ratio. Given that a decrease in ATP concentrations likely affects a variety of cellular processes, including signal transduction, we compared the phosphorylation state of several proteins in anoxic embryos and normoxic embryos. We found that the phosphorylation state of histone H3 and cell cycle–regulated proteins recognized by the MPM-2 antibody were not detectable in anoxic embryos. Thus, dephosphorylation of specific proteins correlate with the establishment and/or maintenance of a state of anoxia-induced suspended animation.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献