Different contributions of nonmuscle myosin IIA and IIB to the organization of stress fiber subtypes in fibroblasts

Author:

Kuragano Masahiro1,Uyeda Taro Q. P.2,Kamijo Keiju3,Murakami Yota14,Takahashi Masayuki14

Affiliation:

1. Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan

2. Department of Physics, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan

3. Department of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan

4. Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan

Abstract

Stress fibers (SFs) are contractile, force-generating bundled structures that can be classified into three subtypes, namely ventral SFs (vSFs), transverse arcs (TAs), and dorsal SFs. Nonmuscle myosin II (NMII) is the main component of SFs. This study examined the roles of the NMII isoforms NMIIA and NMIIB in the organization of each SF subtype in immortalized fibroblasts. Knockdown (KD) of NMIIA (a major isoform) resulted in loss of TAs from the lamella and caused the lamella to lose its flattened shape. Exogenous expression of NMIIB rescued this defect in TA formation. However, the TAs that formed on exogenous NMIIB expression in NMIIA-KD cells and the remaining TAs in NMIIB-KD cells, which mainly consisted of NMIIB and NMIIA, respectively, failed to rescue the defect in lamellar flattening. These results indicate that both isoforms are required for the proper function of TAs in lamellar flattening. KD of NMIIB resulted in loss of vSFs from the central region of the cell body, and this defect was not rescued by exogenous expression of NMIIA, indicating that NMIIA cannot replace the function of NMIIB in vSF formation. Moreover, we raised the possibility that actin filaments in vSFs are in a stretched conformation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3