A Respondent-friendly Method of Ranking Long Lists

Author:

Heyman James1,Sailors John2

Affiliation:

1. University of St. Thomas

2. University of Scranton

Abstract

This article illustrates a respondent-friendly approach to preference elicitation over large choice sets, which overcomes limitations of rating, full-list ranking, conjoint and choice-based approaches. This approach, HLm, requires respondents to identify the top and bottom m items from an overall list. Across respondents, the number of times an item appears in participants' L (low) list is subtracted from the number of times it appears in participants' H (high) list. These net scores are then used to order the total list. We illustrate the approach in three experiments, demonstrating that it compares favourably to familiar methods, while being much less demanding on survey participants. Experiment 1 had participants alphabetise words, suggesting the HLm method is easier than full ranking but less accurate if m does not increase with increases in list length. The objective of experiment 2 was to order US states by population. In this domain, where knowledge was imperfect, HLm outperformed full ranking. Experiment 3 involved eliciting respondents' personal tastes for fruit. HLm resulted in a final ranking that correlated highly with MaxDiff scaling. We argue that HLm is a viable method for obtaining aggregate order of preferences across large numbers of alternatives.

Publisher

SAGE Publications

Subject

Marketing,Economics and Econometrics,Business and International Management

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3