Mapping and monitoring genetic diversity of an alpine freshwater top predator by applying newly proposed indicators

Author:

Andersson Anastasia1,Karlsson Sten2,Ryman Nils1,Laikre Linda1

Affiliation:

1. Stockholm University

2. Norwegian Institute for Nature Research

Abstract

Genetic diversity is the basis for population adaptation and long-term survival, yet rarely considered in biodiversity monitoring. One key issue is the need for useful and straightforward indicators of genetic diversity. To test newly proposed indicators, we monitored genetic diversity over 40 years (1970-2010) in metapopulations of brown trout inhabiting 27 small mountain lakes representing 10 water systems in central Sweden. Three of the indicators were previously proposed for broad, international use for the Convention on Biological Diversity (CBD) context, while three others were recently elaborated for national use by a Swedish science-management effort and applied for the first time here. The Swedish indicators use molecular genetic data to monitor genetic diversity within and between populations and assess the effective population size (Ne). We used a panel of 96 SNPs and identified 29 discrete populations retained over time. Over 40 percent of the lakes harbored more than one population indicating that brown trout biodiversity hidden as cryptic, sympatric populations are more common than recognized. The Ne indicator showed values below the threshold (Ne≤500) in 20 populations with five showing Ne<100. Although statistically significant genetic diversity reductions occurred in several populations, they were mostly within proposed threshold limits. Metapopulation structure appears to buffer against diversity loss; when applying the indicators to metapopulations most indicators suggest an acceptable genetic status in all but one system. The CBD indicators agreed with the national ones but provided less detail. We propose that all indicators applied here are appropriate for monitoring genetic diversity within species.

Publisher

Authorea, Inc.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3