Characterisation and Modelling of Peak Shifts in Conventional Powder Diffractometry

Author:

Cheary Robert W.,Cline James P.,Anast Maree

Abstract

The peak angle 2θpis one of the most commonly measured parameters in powder diffractometry, but there is little understanding of the extent to which the instrument affects this measurement. The majority of theoretical and experimental studies of the effects of instrumental aberrations have been based on the peak centroid 29c. In this investigation we have examined the extent to which peak angles in a conventional powder diffractometer shift for different combinations of divergence slit, Soller slits and receiving slit. The line profile standard SRM 660 (LaB6) was used to generate instrument profiles and X-ray data were collected from a diffractometer fitted with a fine focus Cu X-ray tube and a graphite post-monochromator set for CuKa. The effect of the instrument is greatest at low angles, but shifts arising from axial divergence can also be detected above 2θ=120°. Below 2θ = 40° changing the divergence slits from 0.3° to 1.0°, or removing one of the Soller slits, can move 2θpby up to 0.025°.

Publisher

Cambridge University Press (CUP)

Reference7 articles.

1. Louèr D. (1992), “Accuracy in Powder Diffraction I!” Proceedings of the International Conference held at NIST, Gaithersburg, MD. 26-29th May 1992.NIST Special Publication 846, p 92-104.

2. Rasberry S. D. (1989), Certificate of Analysis, SRM 660 “Instrument Line Position and Profile Shape Standard for X-ray Diffraction” NIST, Gaithersburg, MD 20899.

3. A fundamental parameters approach to X-ray line-profile fitting

4. An Analysis of the Effect of Different Instrumental Conditions on the Shapes of X-ray Powder Line Profiles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Certification of Standard Reference Material 1979: Powder Diffraction Line Profile Standard for Crystallite Size Analysis;Journal of Research of the National Institute of Standards and Technology;2020-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3