Theoretical Correction for Coexistent Elements in Fluorescent X-Ray Analysis of Alloy Steel

Author:

Shiraiwa Toshio,Fujino Nobukatsu

Abstract

AbstractWith fluorescent X-ray analysis as routine work, the correction term for the coexistent element can be expressed as linear terms of the weight fraction of the element because the compositions of samples are limited to a small range. Usually those correction factors which require a great deal of work are obtained experimentally. The authors have obtained theoretical equations of fluorescent X-ray intensity which are in good agreement with experimental values. The linear correction factors are obtained from derivatives of those equations, and their values can be easily calculated with a computer. The experimental X-ray intensity versus the weight fractions is usually expressed as a line. However, the linear approximation is not correct over a wide range of the composition. The second derivative of the theoretical equation explains the deviation from the linear approximation and gives the range where the linear approximation is allowed. The calculations are applied to the analysis of stainless steels, several low-alloy steels, and iron ores, and experimental results are corrected by the calculated results. Correction factors for Ni Kα, Fe Kα, Cr Kα, Mn Kα, and Cu Kα in stainless steels and Cr Kα and Mn Kα in low-alloy steels are calculated for coexistent elements such as carbon, silicon, titanium, chromium, manganese, copper, niobium, and molybdenum. For example, standard deviations of chromium and manganese analyzed results in lowalloy steels decrease from 0.169 and 0.044% to0.030 and0.023%, respectively, with theoretical corrections. In the analysis of iron ore, the fluorescent X-ray intensity of iron is affected by combined oxygen, which is different for the various compounds of iron oxides, and other impurities such as alumina, silica, and lime. The correction factors of these are obtained by calculation, and the standard deviation decreases from 1.70 to 0.44% for 55.1 to 68.5% iron. It is found by experiment that the theoretical values have about 1 or 2% of relative errors, and their derivatives also have relative errors of the same order of magnitude. But the ranges of coexistent elements are usually small, a few percent at most in routine work, and the theoretical values can be used in practical analyses.

Publisher

Cambridge University Press (CUP)

Reference7 articles.

1. Birks L. S. (Private communications and his lectures in Japan, 1963).

2. Correction metnod for matrix effect in fluores-cent X-ray analysis (Part I)

3. Theoretical Calculation of Fluorescent X-Ray Intensities in Fluorescent X-Ray Spectrochemical Analysis.

4. Shiraiwa T. and Fujino N. , “Application of Theoretical Calculations to X-Ray Fluorescent Analysis,” The Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Paper No. 284, 1967.

5. Determination of the interelement effect in the X-ray fluorescence analysis of Cr in steels

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3