Affiliation:
1. Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, 00076 Espoo, Finland
Abstract
This exploratory study investigates the phenomenon of the auditory perceived aperture position (APAP): the point at which one feels they are in the boundary between two adjoined spaces, judged only using auditory senses. The APAP is likely the combined perception of multiple simultaneous auditory cue changes, such as energy, reverberation time, envelopment, decay slope shape, and the direction, amplitude, and colouration of direct and reverberant sound arrivals. A framework for a rendering-free listening test is presented and conducted in situ, avoiding possible inaccuracies from acoustic simulations, impulse response measurements, and auralisation to assess how close the APAP is to the physical aperture position under blindfold conditions, for multiple source positions and two room pairs. Results indicate that the APAP is generally within [Formula: see text] m of the physical aperture position, though reverberation amount, listener orientation, and source position affect precision. Comparison to objective metrics suggests that the APAP generally falls within the period of greatest acoustical change. This study illustrates the non-trivial nature of acoustical room transitions and the detail required for their plausible reproduction in dynamic rendering and game audio engines.
Publisher
Acoustical Society of America (ASA)
Subject
Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献