Modeling individual head-related transfer functions from sparse measurements using a convolutional neural network

Author:

Jiang Ziran1,Sang Jinqiu2,Zheng Chengshi1ORCID,Li Andong1,Li Xiaodong1

Affiliation:

1. Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences 1 , Beijing 100190, China

2. Shanghai Institute of AI for Education, East China Normal University 2 , Shanghai 200062, China

Abstract

Individual head-related transfer functions (HRTFs) are usually measured with high spatial resolution or modeled with anthropometric parameters. This study proposed an HRTF individualization method using only spatially sparse measurements using a convolutional neural network (CNN). The HRTFs were represented by two-dimensional images, in which the horizontal and vertical ordinates indicated direction and frequency, respectively. The CNN was trained by using the HRTF images measured at specific sparse directions as input and using the corresponding images with a high spatial resolution as output in a prior HRTF database. The HRTFs of a new subject can be recovered by the trained CNN with the sparsely measured HRTFs. Objective experiments showed that, when using 23 directions to recover individual HRTFs at 1250 directions, the spectral distortion (SD) is around 4.4 dB; when using 105 directions, the SD reduced to around 3.8 dB. Subjective experiments showed that the individualized HRTFs recovered from 105 directions had smaller discrimination proportion than the baseline method and were perceptually undistinguishable in many directions. This method combines the spectral and spatial characteristics of HRTF for individualization, which has potential for improving virtual reality experience.

Funder

National Science Fund of China

the National Key Research and DevelopmentProgram of China

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference37 articles.

1. The CIPIC HRTF database,2001

2. Sparse head-related transfer function representation with spatial aliasing cancellation,2018

3. Novel sampling scheme on the sphere for head-related transfer function measurements;IEEE/ACM Trans. Audio Speech Lang. Process.,2015

4. Spatial frequency response surfaces: An alternative visualization tool for head-related transfer functions (HRTFS),1999

5. Deep neural network based HRTF personalization using anthropometric measurements,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3