Affiliation:
1. Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University , Xi'an 710119, People's Republic of China
Abstract
As a critical component of ultrasonic vibration systems, piezoelectric transducers play an essential role in various practical application scenarios. Recent advances in spherical transducers have been widely used in underwater sound and structural health monitoring, while the cascaded spherical piezoelectric transducer with arbitrary piezoceramic shell thickness has not been investigated. Here, we propose a radially cascaded spherical piezoelectric transducer (RCSPT) and derive its electromechanical equivalent circuit with mechanical losses, dielectric losses, and load mechanical impedances. The resulting device is composed of three concentric spherical metal shells and two radially polarized spherical piezoceramic shells. The underlying physical mechanism is the inverse piezoelectric effect, which converts electrical signals into mechanical vibrations. The effects of the spherical piezoceramic shell's thickness and location on the RCSPT are studied. We also analyze the effects of mechanical losses, dielectric losses, and load mechanical impedances on the modulus of input electric impedance of the cascaded spherical transducer. The experiments are conducted to verify the electromechanical characteristics of the resulting device, which are in good agreement with the simulated results and theoretical predictions. Our methodology will offer new possibilities for designing RCSPTs and may promote applications in various fields, such as underwater acoustic detection and structural health monitoring.
Funder
National Natural Science Foundation of China
Natural Science Basic Research Program of Shaanxi Province
the Young Talent Lifting Program of Xi 'an Science and Technology Association in the Shaanxi Province of China
Publisher
Acoustical Society of America (ASA)
Subject
Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献