Predicting underwater acoustic transmission loss in the SOFAR channel from ray trajectories via deep learning

Author:

Wang Haitao1ORCID,Peng Shiwei1,He Qunyi1,Zeng Xiangyang1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University , Xi'an, 710072, China wht@nwpu.edu.cn , pengsw@mail.nwpu.edu.cn , hequnyi123@mail.nwpu.edu.cn , zenggxy@nwpu.edu.cn

Abstract

Predicting acoustic transmission loss in the SOFAR channel faces challenges, such as excessively complex algorithms and computationally intensive calculations in classical methods. To address these challenges, a deep learning-based underwater acoustic transmission loss prediction method is proposed. By properly training a U-net-type convolutional neural network, the method can provide an accurate mapping between ray trajectories and the transmission loss over the problem domain. Verifications are performed in a SOFAR channel with Munk's sound speed profile. The results suggest that the method has potential to be used as a fast predicting model without sacrificing accuracy.

Funder

National Natural Science Foundation of China

Publisher

Acoustical Society of America (ASA)

Reference29 articles.

1. Three-dimensional modeling of earthquake generated acoustic waves in the ocean in simplified configurations;J. Acoust. Soc. Am.,2019

2. Source localization in the deep ocean using a convolutional neural network;J. Acoust. Soc. Am.,2020

3. Detecting, classifying, and counting blue whale calls with Siamese neural networks;J. Acoust. Soc. Am.,2021

4. M. B. Porter “ The BELLHOP manual and user's guide: Preliminary draft,” http://oalib.hlsresearch.com/Rays/HLS-2010-1.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3