Affiliation:
1. Shaanxi Key Laboratory of Ultrasonics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, People's Republic of China
Abstract
In this paper, an analytical expression of the acoustic radiation force (ARF) for a spherical particle with a hemispherically split impedance boundary in a plane wave is deduced. Numerical calculations are carried out by considering the effect of the magnitude and phase of the acoustic impedance on the ARF. Computation results show that the increase in the magnitude of the acoustic impedance results in an overall decrease in the ARF, whereas the phase of the acoustic impedance results in a decrease in the ARF in the low frequency region. As the frequency increases, the positive phase angle leads to a decrease in the ARF, and the negative phase angle causes the ARF to increase rapidly. For a hemispherically split impedance sphere, the values of the ARF range from those of the rigid sphere and uniform impedance sphere. The finite-element models for the calculation of the ARF of a hemispherically split impedance boundary sphere are established and the correctness of the analytical theory is proved by numerical comparison. This work is expected to contribute theoretical support to the acoustic manipulation of particles with a nonuniform hemispherically split structure.
Funder
National Natural Science Foundation of China
Publisher
Acoustical Society of America (ASA)
Subject
Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献