Dual projection generalized sidelobe canceller based on mixed signal subspace for ultrasound imaging

Author:

Li Xitao1,Wang Ping1ORCID,Du Tingting2,Li Qianwen1,Luo Ciyong1,Wang Chaolong3

Affiliation:

1. State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044, China

2. State Grid Rizhao Electric Power Corporation, Limited, Rizhao, 276800, China

3. Chongqing Dodem Communications Technology Corporation, Limited, Chongqing, 404300, China

Abstract

In this paper, we propose a dual projection generalized sidelobe canceller (DPGSC) based on mixed subspace (MS) for ultrasound imaging, which aims to improve the speckle signal-noise-ratio (sSNR) and decrease the dark-region artifacts. A mixed signal subspace based on the correlation between the desired steering vector and the eigenvectors is constructed to further optimize the desired steering vector and the final weight vector. The simulated and experimental results show that the proposed method can greatly improve the speckle uniformity. In the geabr_0 experiment, the standard deviation of background and sSNR of MS-DPGSC can be improved by 48.07% and 58.49% more than those of eigenspace-based generalized sidelobe canceller (ESGSC). Furthermore, for a hyperechoic target, the maximal improvement of contrast ratio is 95.29%. In terms of anechoic cyst, the contrast-to-noise ratio of MS-DPGSC is increased by 123.08% than that of ESGSC. The rat mammary tumor experimental data show that the proposed method has better comprehensive imaging effect than traditional generalized sidelobe cancellers and ESGSCs.

Funder

National Natural Science Foundation of China

Chongqing special key project for technological innovation and application development

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3