Characterization of anthropogenic noise and oyster toadfish (Opsanus tau) calling behavior in urban and small-town coastal soundscapes

Author:

Hom Kelsey N.1,Quigley Thomas D.1,Rodriguez Rachel D.2,Gdanski Sydney G.2,Lazrinth Xylo I.2,Jones Rebecca3,Forlano Paul M.1

Affiliation:

1. Subprogram in Ecology, Evolutionary Biology and Behavior, The Graduate Center, City University of New York (CUNY) 1 , New York, New York 10031, USA

2. Department of Biology, Brooklyn College, City University of New York (CUNY) 2 , Brooklyn, New York 11210, USA

3. St. Mary's College, Notre Dame 3 , Indiana 46556, USA

Abstract

The oyster toadfish (Opsanus tau) is an ideal model to examine the effects of anthropogenic noise on behavior because they rely on acoustic signals for mate attraction and social interactions. We predict that oyster toadfish have acclimated to living in noise-rich environments because they are common in waterways of urban areas, like New York City (NYC). We used passive acoustic monitoring at two locations to see if calling behavior patterns are altered in areas of typically high boat traffic versus low boat traffic (Pier 40, NYC, NY, and Eel Pond, Woods Hole, MA, respectively). We hypothesized that toadfish in NYC would adjust their circadian calling behavior in response to daily anthropogenic noise patterns. We quantified toadfish calls and ship noise over three 24-h periods in the summer reproductive period at both locations. We observed an inverse relationship between the duration of noise and the number of toadfish calls at Pier 40 in comparison to Eel Pond. Additionally, toadfish at Pier 40 showed significant differences in peak calling behavior compared to Eel Pond. Therefore, oyster toadfish may have acclimated to living in an urban environment by potentially altering their communication behavior in the presence of boat noise.

Funder

Hudson River Foundation

National Science Foundation

Publisher

Acoustical Society of America (ASA)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction to the special issue on fish bioacoustics: Hearing and sound communication;The Journal of the Acoustical Society of America;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3