Localization of a remote source in a noisy deep ocean sound channel using phase-only matched autoproduct processing

Author:

Geroski David J.1ORCID,Johnson Jay R.2,Dowling David R.2ORCID

Affiliation:

1. Applied Physics Program, University of Michigan 1 , Ann Arbor, Michigan 48109, USA

2. Department of Mechanical Engineering, University of Michigan 2 , Ann Arbor, Michigan 48109, USA

Abstract

Long-range passive source localization is possible in the deep ocean using phase-only matched autoproduct processing (POMAP) [Geroski and Dowling (2021). J. Acoust. Soc. Am. 150, 171–182], an algorithm based on matched field processing that is more robust to environmental mismatch. This paper extends these prior POMAP results by analyzing the localization performance of this algorithm in the presence of environmental noise. The noise rejection performance of POMAP is assessed using both simulated and measured signal data, with noise data based on environmental noise measurements. Herein, signal and noise measurements are from the nominally one-year-long PhilSea10 ocean acoustic propagation experiment. All signals were recorded from a single moored source, placed near the ocean sound channel 129.4 km away from a nearly water-column-spanning distributed vertical line array. The source transmitted linear frequency modulated chirps with nominal bandwidth from 200 to 300 Hz. The noise measurements used in this study were collected in the months after this source stopped transmitting, and synthetic samples of noise are calculated based on the characteristics of this measured noise. The effect that noise rejection algorithms have on the source localization performance of POMAP is also evaluated, but only 1 dB of performance improvement is achieved using these.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference38 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3