Recognition method for the bionic camouflage click communication trains modulated by time delay difference

Author:

Jiang Jia-jia1,Qiao Fei1,Li Yao2,Li Chunyue1,Li Zhuochen1,Sun Zhongbo1,Fu Xiao1,Duan Fajie1ORCID

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, China

2. China Shipbuilding System Engineering Research Institute, Beijing 100036, China

Abstract

Bionic camouflage covert underwater acoustic communication has recently attracted great attention. However, we have not found relevant methods or literature to recognize these bionic camouflage communication signals (BCCSs) in the area of anti-reconnaissance. Focused on recognizing the BCCSs, this article proposes a recognition method based on the statistics of inter-click intervals to recognize the camouflaged click communication train (CCCT), which is modulated by time delay difference (TDD). We first analyze the characteristics of TDD distributions of CCCT and real click train (RCT). According to the coding principle, the TDDs of CCCTs present a ladder-like distribution with a fixed time step, and the TDDs are equal to the integral multiple of the fixed time step. On the contrary, the TDDs of RCTs are approximately random distribution within a certain time range. Therefore, based on the different TDD distributions, this article classifies CCCTs and RCTs by utilizing the statistical property of TDD distributions. To measure the TDDs of diverse cetacean clicks accurately, a new click location scheme based on the dynamic window energy ratio is proposed. Next, based on the statistics of TDD distribution, the influences of the TDDs that are caused by multipath interferences are eliminated by iteration. Simulations demonstrate the accuracy of the recognition method under different conditions.

Funder

National Natural Science Foundation of China

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3