Synthetic mucus for an ex vivo phonation setup: Creation, application, and effect on excised porcine larynges

Author:

Peters Gregor1ORCID,Jakubaß Bernhard1,Weidenfeller Katrin1,Kniesburges Stefan1,Böhringer David2,Wendler Olaf1,Mueller Sarina K.3,Gostian Antoniu-Oreste3,Berry David A.4,Döllinger Michael1,Semmler Marion1

Affiliation:

1. Division of Phoniatrics and Pediatric Audiology at the Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Medical School at Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

2. Biophysics Group, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91052 Erlangen, Germany

3. Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Erlangen, Medical School at Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany

4. Department of Head and Neck Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90024, USA

Abstract

Laryngeal mucus hydrates and lubricates the deformable tissue of the vocal folds and acts as a boundary layer with the airflow from the lungs. However, the effects of the mucus' viscoelasticity on phonation remain widely unknown and mucus has not yet been established in experimental procedures of voice research. In this study, four synthetic mucus samples were created on the basis of xanthan with focus on physiological frequency-dependent viscoelastic properties, which cover viscosities and elasticities over 2 orders of magnitude. An established ex vivo experimental setup was expanded by a reproducible and controllable application method of synthetic mucus. The application method and the suitability of the synthetic mucus samples were successfully verified by fluorescence evidence on the vocal folds even after oscillation experiments. Subsequently, the impact of mucus viscoelasticity on the oscillatory dynamics of the vocal folds, the subglottal pressure, and acoustic signal was investigated with 24 porcine larynges (2304 datasets). Despite the large differences of viscoelasticity, the phonatory characteristics remained stable with only minor statistically significant differences. Overall, this study increased the level of realism in the experimental setup for replication of the phonatory process enabling further research on pathological mucus and exploration of therapeutic options.

Funder

Deutsche Forschungsgemeinschaft

Emerging Fields Initiative of the University of Erlangen–Nürnberg

National Institute on Deafness and Other Communication Disorders

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3