Robust unsupervised Tursiops aduncus whistle-event detection using gammatone multi-channel Savitzky–Golay based whistle enhancement

Author:

Li Lei1ORCID,Qiao Gang1,Qing Xin1,Zhang Huaying1,Liu Xinyu1,Liu Songzuo1

Affiliation:

1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China

Abstract

Detecting whistle events is essential when studying the population density and behavior of cetaceans. After eight months of passive acoustic monitoring in Xiamen, we obtained long calls from two Tursiops aduncus individuals. In this paper, we propose an algorithm with an unbiased gammatone multi-channel Savitzky–Golay for smoothing dynamic continuous background noise and interference from long click trains. The algorithm uses the method of least squares to perform a local polynomial regression on the time–frequency representation of multi-frequency resolution call measurements, which can effectively retain the whistle profiles while filtering out noise and interference. We prove that it is better at separating out whistles and has lower computational complexity than other smoothing methods. In order to further extract whistle features in enhanced spectrograms, we also propose a set of multi-scale and multi-directional moving filter banks for various whistle durations and contour shapes. The final binary adaptive decisions at frame level for whistle events are obtained from the histograms of multi-scale and multi-directional spectrograms. Finally, we explore the entire data set and find that the proposed scheme achieves the highest frame-level F1-scores when detecting T. aduncus whistles than the baseline schemes, with an improvement of more than 6%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province, China

Special Funds for Taishan Industrial Leading Talents Project

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3