Underwater Doppler-bearing maneuvering target motion analysis based on joint estimated adaptive unscented Kalman filter

Author:

Sun Dajun1,Zhang Yiao1,Teng Tingting1,Gao Linsen1

Affiliation:

1. National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University , Harbin 150001, China

Abstract

Noncooperative maneuvering target motion analysis is one of the challenging tasks in the field of underwater target localization and tracking for passive sonar. Underwater noncooperative targets often perform various maneuvers, and the targets are commonly modeled as a combination of constant-velocity models and coordinate-turn models with unknown turning rates. Traditional algorithms for Doppler-bearing target motion analysis are incapable of processing noncooperative maneuvering targets because the algorithms rely on a priori information of the turning rate and the center frequency. To address these shortcomings, this paper proposes the joint estimated adaptive unscented Kalman filter (JE-AUKF) algorithm. The JE-AUKF places the center frequency and turning rate into the state vector and constructs a time-varying state model that self-adapts to a maneuvering target. The JE-AUKF also introduces a time-varying fading factor into the process noise covariance matrix to improve the tracking performance. Simulations and sea trials are conducted to compare the performance of the JE-AUKF with the iterative unscented Kalman filter, the interacting multiple model-unscented Kalman filter, the interacting multiple model-iterative unscented Kalman filter, and the interacting multiple model-joint estimated unscented Kalman filter. The result shows that the JE-AUKF achieves better tracking performance for noncooperative maneuvering targets.

Funder

National Nature Science Foundation of China

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced noise resilience in passive tone detection via broad-receptive field complex-valued convolutional neural networks;The Journal of the Acoustical Society of America;2024-06-01

2. A coherent integration method of an active sonar for maneuvering turning target detection;The Journal of the Acoustical Society of America;2024-05-01

3. Kalman filtering used for passive synthetic aperture;Journal of Physics: Conference Series;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3