Author:
Froese Jordan,Betts Phillip
Abstract
Rieske dioxygenases are multi-component enzyme systems, naturally found in many soil bacteria, that have been widely applied in the production of fine chemicals, owing to the unique and valuable oxidative dearomatization reactions they catalyze. The range of practical applications for these enzymes in this context has historically been limited, however, due to their limited substrate scope and strict selectivity. In an attempt to overcome these limitations, our research group has employed the tools of enzyme engineering to expand the substrate scope or improve the reactivity of these enzyme systems in specific contexts. Traditionally, enzyme engineering campaigns targeting metalloenzymes have avoided mutations to metal-coordinating residues, based on the assumption that these residues are essential for enzyme activity. Inspired by the success of other recent enzyme engineering reports, our research group investigated the potential to alter or improve the reactivity of Rieske dioxygenases by altering or eliminating iron coordination in the active site of these enzymes. Herein, we report the modification of all three iron-coordinating residues in the active site of toluene dioxygenase both to alternate residues capable of coordinating iron, and to a residue that would eliminate iron coordination. The enzyme variants produced in this way were tested for their activity in the cis-dihydroxylation of a small library of potential aromatic substrates. The results of these studies demonstrated that all three iron-coordinating residues, in their natural state, are essential for enzyme activity in toluene dioxygenase, as the introduction of any mutations at these sites resulted in a complete loss of cis-dihydroxylation activity.
Publisher
Ball State University Libraries