Comparison of Growth Responses in Sorghum Genotypes and Corn Grown in Arid Regions Under Different Levels of Water and Nitrogen Supplies

Author:

Asadi Marzieh,Eshghizadeh Hamid RezaORCID

Abstract

Improving the productivity of cropping systems in terms of irrigation water use and nitrogen (N) fertilizer and exploring the associated effective physiological traits are priorities mostly in water-limited areas. Therefore, this field experiment was conducted on a clay loam soil (thermic family of Typic Haplargids) in central Iran with the three planting dates of 2016 (June 30), early 2017 (June 10), and late 2017 (July 11). Three forage sorghum genotypes including SF002, SF001, and Pegah, three grain sorghum genotypes of MGS5, GS24, GS28, and one common corn hybrid were grown under two irrigation regimes (55% and 85% of the maximum allowable depletion – MAD) as well as two N levels (0 and 112.5 kg N ha−1 in the form of urea, 46% N). The results showed considerable genetic variation among the sorghum genotypes in terms of yield. Due to water-limited conditions, the grain and biomass yields of the corn hybrid were decreased more those of sorghum genotypes. However, higher potential sorghum genotypes recorded total dry biomass (shoot biomass and grain yield) values similar to those of corn under both normal and deficit irrigation regimes. On the other hand, the grain share of the total biomass in the corn hybrid was higher in the two irrigation regimes. Under deficit irrigation, the use efficiency values of irrigation water (IWUEb) and N fertilizer (NUEb) for the biomass yield in Pegah and GS24 were higher than those in the corn hybrid. However, IWUEg and NUEg in corn were significantly higher under both irrigation regimes compared to those recorded for even the high-yield potential genotypes of the grain and forage sorghum. The positive effects of N application on the plants declined under water-limited stress, but the negative effects of water deficit stress were reduced with N application, while dry matter and grain yield increased as a consequence of the increase in the maximum leaf area index, chlorophyll <em>a</em>, chlorophyll <em>b</em>, and carotenoid contents, as well as the enhanced antioxidant activities of catalase, ascorbate peroxidase, and peroxidase enzymes. It can be concluded that the corn-based planting system is superior to sorghum even under low irrigation conditions, and N supply could moderate the negative effects of water shortage stress on plant growth.

Publisher

Polish Botanical Society

Subject

Plant Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3