Three-dimensional bio-printed constructs consisting of human umbilical-derived mesenchymal stem cells promote cell viability, proliferation, and differentiation in vitro

Author:

Tao Qingxia,Wu Cuiying,Li Xinda,Chen Wenjin,Sun Kai,Zhang Peng,Yang Zhijun,Liu Ning,Xu Ruxiang,Xu Tao,Wang Chong

Abstract

The aim of this study was to investigate the effect of three-dimensional (3D) bio-printed constructs consisting of human umbilical-derived mesenchymal stem cells (HUMSCs) on cell viability, proliferation and differentiation in vitro. Functional 3D bio-printed microspheres consisting of HUMSCs were constructed using electrostatic inkjet technique. The parameters used for the synthesis of 3D bio-printed tissue constructs were first optimized. The viability, proliferation and differentiation of 3D cultured HUMSCs were assessed. The results of scanning electron microscopy (SEM) showed that isolated HUMSCs exhibited fibroblast-like spindle adherent growth. The optimized printing parameters were 6 kV voltage, 10 mL/h flow, 15 cm receiving height, and alginate: water ratio of 1:1 mixed at 37 °C. Compared with 2D cultured HUMSCs, the 3D cultured HUMSCs have better viability, proliferation and differentiation ability. The results obtained in this study indicate that 3D bio-printed tissue constructs promote HUMSC viability, proliferation, and neural differentiation in vitro.

Publisher

CMB Association

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3