Physicochemical characterization of C-phycocyanin from Plectonema sp. and elucidation of its bioactive potential through in silico approach

Author:

Husain Arbab,Farooqui Alvina,Khanam Afreen,Sharma Shubham,Mahfooz Sadaf,Shamim Adeeba,Akhter Firoz,Alatar Abdulrahman A.,Faisal Mohammad,Ahmad Saheem

Abstract

C-phycocyanin (C-PC), the integral blue-green algae (BGA) constituent has been substantially delineated for its biological attributes. Numerous reports have illustrated differential extraction and purification techniques for C-PC, however, there exists paucity in a broadly accepted process of its isolation. In the present study, we reported a highly selective C-PC purification and characterization method from nontoxic, filamentous and non-heterocystous cyanobacterium Plectonema sp. C-PC was extracted by freeze-thawing, desalted and purified using ion-exchange chromatography. The purity of C-PC along with its concentration was found to be 4.12 and 245 µg/ml respectively.  Comparative characterization of standard and purified C-PC was performed using diverse spectroscopic techniques namely Ultra Violet-visible, fluorescence spectroscopy and Fourier transform infrared (FT-IR). Sharp peaks at 620 nm and 350 nm with UV-visible and FT-IR spectroscopy respectively, confirmed amide I bands at around 1638 cm-1 (C=O stretching) whereas circular dichroism (CD) spectra exhibited α-helix content of secondary structure of standard 80.59% and 84.59% of column purified C-PC. SDS-PAGE exhibited two bands of α and β subunits 17 and 19 kDa respectively. HPLC evaluation of purified C-PC also indicated a close resemblance of retention peak time (1.465 min, 1.234 min, 1.097 min and 0.905 min) with standard C-PC having retention peak timing of 1.448 min, 1.233 min and 0.925 min. As a cautious approach, the purified C-PC was further lyophilized to extend its shelf life as compared to its liquid isoform. To evaluate the bioactive potential of the purified C-PC in silico approach was attempted. The molecular docking technique was carried out of C-PC as a ligand-protein with free radicals and α-amylase, α-glucosidase, glycogen synthase kinase-3 and glycogen phosphorylase enzymes as receptors to predict the free radical scavenging (antioxidant) and to target antidiabetic property of C-PC. In both receptors free radicals and enzymes, ligand C-PC plays an important role in establishing interactions within the cavity of active sites. These results established the antioxidant potential of C-PC and also give a clue towards its antidiabetic potential warranting further research.

Publisher

CMB Association

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3