Estimation of Elevated Systolic Pulmonary Artery Pressure Using Right Ventricular Isovolumic Relaxation Time

Author:

Arke Avinash Dayalal1,Babu P. Mahesh2,Borkar Avinash Moreshwar3

Affiliation:

1. MBBS, MD, FNB, DNB, Senior Divisional Medical Officer, Department of Cardiology, Jagjeevan Ram Railway Hospital, Mumbai, Maharashtra, India,

2. MBBS, MD, DNB, Senior Consultant, Department of Cardiology, Vijaya Hospital, Chennai, Tamil Nadu, India,

3. MBBS, MD, Associate Professor, Department of Community Medicine, Datta Meghe Medical College, Nagpur, Maharashtra, India,

Abstract

Objectives: Echocardiographic estimation of pulmonary hypertension (PH) in absence of tricuspid regurgitation (TR) remains a challenge. Isovolumic relaxation time (IVRT) measured by Doppler tissue imaging (DTI) can be a useful method to estimate PH. This study was designed to evaluate the feasibility and accuracy of the right ventricle (RV) IVRT for predicting PH. Material and Methods: We conducted an analytical cross-sectional study in 90 consecutive patients suspected or known to have pulmonary hypertension (PH). sPAP was assessed using TR jet velocity using a Bernoulli’s equation. RV IVRT was calculated using tissue Doppler imaging. Results: Out of the 90 consecutive patients [49 (54.4%) were female, mean age was 48 +/- 14 years and mean systolic pulmonary aretry pressure (sPAP) was 68.25+/- 29.15 mmHg. Mean RV IVRT was 67.29 ± 22.2 msec. We found a strong correlation between IVRT and systolic pulmonary pressure (r = 0.69, P < 0.0001) and a cutoff of 43 ms showed a sensitivity and specificity of 89% and 93%, respectively, for the prediction of elevated sPAP (≥39 mm Hg). However, this correlation reduces in the presence of RV dysfunction and elevated mean RA pressure. Conclusion: The calculation of IVRT by DTI is a simple and feasible method. It correlates well with sPAP. It is a useful echocardiographic parameter as a screening in patients at risk for PH, monitoring the disease progression and the effect of the treatment for PH, especially in patients with absent TR.

Publisher

Scientific Scholar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3