Smart detection of fractures in formation image logs for enhanced CO2 storage

Author:

Katterbauer KlemensORCID,Al Qasim Abdulaziz,Al Shehri Abdallah,Al Zaidy RabeahORCID

Abstract

Carbon capture and storage (CCS) has attracted strong interest from industry and the scientific community alike due to the ability of storing CO2 in subsurface reservoirs. Deep saline aquifers may be well suited for the safe and long-term storage given their geological structure. The long term underground storage in saline aquifers depends on variety of interrelated trapping mechanisms in addition to the caprock sealing efficiency. Fractures are commonplace in many geological settings and represent a crucial role for hydrocarbon migrations and entrapment. Fracture impact fluid flow in variety of forms, particularly due to the complexity and varying natures of the fractures, which channel the injected CO2 throughout the reservoir formation. This is especially important for tight gas reservoirs and low permeable cap rock structures whose permeability is primarily characterized by the fault and fractures. This outlines the importance of determining accurately fracture penetration in wellbores for CO2 injection. We present a new deep learning framework for the detection of fractures in formation image logs for enhancing CO2 storage. Fractures may represent high velocity gas flow channels which may make CO2 storage a challenge. The novel deep learning framework incorporates both acoustic and electrical formation image logs for the detection of fractures in wellbores for CO2 storage enhancement and injection optimization. The framework was evaluated on the Pohokura-1 well for the detection of fractures, with the framework exhibiting strong classification accuracy. The framework could accurately classify the fractures based on acoustic and electrical image logs in 98.1% for the training and 85.6% for the testing dataset. Furthermore, estimates of the fracture size are strong, indicating the ability of the framework to accurately quantify fracture sizes in order to optimize CO2 injection and storage.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3