Understanding the performance, emissions, and combustion behaviors of a DI diesel engine using alcohol/hemp seed oil biodiesel/diesel fuel ternary blends: Influence of long-chain alcohol type and concentration

Author:

Yilbaşi ZekiORCID,Yeşilyurt Murat KadirORCID,Arslan MevlütORCID,Yaman HayriORCID

Abstract

In this study, it was aimed to examine the influences of biodiesel–diesel-higher alcohol (1-pentanol, 1-hexanol, and 1-heptanol) blends on the performance, emission and combustion behaviors of a single-cylinder diesel engine. The tests were performed at a fixed speed of 1500 rpm and variable loads (25%, 50%, 75%, and 100%). For the tests, 80% diesel and 20% hemp seed oil biodiesel were blended and called as B20. Biodiesel fuel was produced by transesterification from hemp seed oil in the presence of methanol and potassium hydroxide for the preparation of B20 binary test fuel and other ternary fuels. Furthermore, nine ternary blend fuels [20% HSOB + 70%, 60% and 50% diesel, respectively + 10%, 20% and 30% higher alcohol (pentanol, hexanol and heptanol) respectively] were prepared. The calculations made with the experimental data revealed that the minimum brake specific energy consumption values were 12,48 MJ/kW h, 13,06 MJ/kW h, 13,27 MJ/kW h, 13,35 MJ/kW h, 13,47 MJ/kW h, and 13,59 MJ/kW h, respectively, for diesel fuel at full load, for fuels B20, B20Hx10, B20Hp10, B20Hx20 and B20Pe10, the maximum brake thermal efficiency values were obtained as 28.85%, 27.56%, 27.14%, 26.97%, 26.73% and 26.49%, respectively, for the same fuels at the same load. The increment in higher alcohol concentration in the blend delayed start of combustion and therefore the ignition delay period was prolonged. In the fuel line pressure data, changes were observed depending on the amount, viscosity and density of the fuel. Furthermore, B20Hx10 and B20Hp10 fuels gave the maximum in-cylinder pressure, heat release rate, average gas temperature and pressure rise rate values after diesel and biodiesel. The addition of biodiesel and higher alcohol to diesel fuel resulted in a decrease in NOX, CO and unburned HC and smoke emissions and an increase in CO2. NOX, CO and unburned HC values of higher alcohol blended fuels at full load showed lower results, between 3.04–22.24%, 22.85–56.35% and 5.44–22.83%, respectively, compared to diesel fuel. It can be concluded that the use of hemp seed oil biodiesel and higher alcohol in the diesel engine will make a significant contribution to the reduction of NOX emissions.

Funder

Project Coordination Application and Research Center-Scientific Research Projects Unit of Yozgat Bozok University

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3