Modeling techno-economic multi-objectives of smart homes considering energy optimization and demand management

Author:

Khan Mohammad Ahmar,Kareem A. K.,Askar Shavan,Abduvalieva Dilsora,R. Roopashree,Prasad K. D. V,Sharma Aanchal,Sharma Abhishek,Ghazaly Nouby M.,Mohmmedi M.

Abstract

The research suggests an approach that prioritizes customer needs and aims to reduce energy expenses while safeguarding customer privacy. Furthermore, it is recommended that smart homes incorporate a home energy management system to optimize appliance energy consumption. Conversely, the introduction of demand-side management addresses the energy management challenges faced by smart households. The main goal of this approach is to decrease energy usage and electricity costs for customers. Moreover, it enhances user satisfaction while waiting at common intervals. The primary emphasis of this study is on a smart residence furnished with energy management technology and smart home gadgets capable of supplying electricity to the grid. These objectives are considered distinct aspects in the multi-objective optimization issue stemming from this approach. The study utilizes the grasshopper optimization algorithm (GOA) to optimize battery and home appliance scheduling in smart homes with flexible devices. The goal is to reduce the overall cost of microgrid systems through demand-side management implementation. This comparison highlights the superiority of the proposed method in optimizing energy consumption and reducing carbon emissions in a variety of scenarios. By achieving lower energy costs and carbon emissions while maintaining a comfortable indoor environment, the proposed method proves to be a highly effective and sustainable solution for energy management in buildings. These simulation results provide strong evidence of the method’s potential to significantly impact energy efficiency and environmental sustainability in real-world applications. Furthermore, the consistent minimization of the discomfort index showcases the method’s ability to prioritize occupant comfort while still achieving significant energy savings and emissions reductions. Overall, the comparison with other algorithms solidifies the effectiveness and practicality of the proposed method in addressing the complex challenges of energy management and sustainability in smart homes.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3