Abstract
In an Enhanced Oil Recovery (EOR) process, one of the main difficulties is to quickly evaluate if the injected chemical products actually improve oil recovery in the reservoir. The efficiency of the process can be monitored in the vicinity of wells, but it may take time to estimate it globally in the reservoir. The objective of this paper is to investigate the ability of 4D seismics to bridge this gap and to help predict the success or breakdown of a production strategy at reservoir scale. To that purpose, we consider a complete workflow for simulating realistic reservoir exploitation using chemical EOR and 4D seismic modeling. This workflow spans from geological description to seismic monitoring simulation and seismic attributes analysis, through geological and reservoir modeling. It is applied here on a realistic case study derived from an outcrop analog of turbiditic reservoirs, for which the efficiency of chemical EOR by polymer and surfactant injection is demonstrated. For this specific field monitoring application, the impact of both waterflooding and proposed EOR injection is visible on the computed seismics. However, EOR injection induces a more continuous water front that can be clearly visible on seismics. In this case, the EOR efficiency can thus be related to the continuity of the water front as seen on seismics. Nevertheless, in other cases, chemical EOR injections may have more moderate impacts, or the field properties may be less adapted to seismic monitoring. This points out the importance of the proposed workflow to check the relevance of seismic monitoring and to design the most adapted monitoring strategy. Numerous perspectives are proposed at the end of the paper. In particular, experts of the different disciplines involved in the proposed workflow can benefit from the availability of a complete set of well-controlled data of various types to test and improve their own tools. In contrast, the non-experts can easily and quickly benefit from “hands-on” experiments for understanding the involved phenomena. Furthermore, the proposed workflow can be directly applied to geological reservoirs all over the world.
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Reference82 articles.
1. Improving reservoir models of Cretaceous carbonates with digital outcrop modelling (Jabal Madmar, Oman): static modelling and simulating clinoforms
2. Arbués P., Mellere D., Falivene O., Fernández O., Muñoz J.A., Marzo M., De Gibert J.M. (2007) Context and architecture of the Ainsa-1-quarry channel complex, Spain, in: Nielsen T.H., Shew R.D., Steffens G.S., Studlick J.R.J. (eds), Atlas of Deep-Water Outcrops. AAPG Studies in Geology 56, Chapter 147, American Association of Petroleum Geologists, Tulsa, OK.
3. Modeling and interpreting the seismic-reflection expression of sandstone in an ancient mass-transport deposit dominated deep-water slope environment
4. Seismic modeling in the analysis of deep-water sandstone termination styles
5. Bartel D.C., Busby M., Nealon J., Zaske J. (2006) Time to depth conversion and uncertainty assessment using average velocity modeling, in: 66th SEG Annual International Meeting, New Orleans, Louisiana, USA, SEG Expanded Abstracts, pp. 2166–2170. doi: 10.1190/1.2369965.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献