Induction of Cationic Chicken Liver-Expressed Antimicrobial Peptide 2 in Response to Salmonella enterica Infection

Author:

Townes Claire L.1,Michailidis Georgios1,Nile Christopher J.1,Hall Judith1

Affiliation:

1. School of Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom

Abstract

ABSTRACT Cationic antimicrobial peptides constitute part of the innate immune system and provide an essential role in the defense against infection. At present there is a paucity of information regarding the antimicrobial profile of the chicken ( Gallus gallus ). Using in silico studies, an expressed sequence tag (EST) clone was identified which encodes a novel cationic antimicrobial peptide, chicken liver-expressed antimicrobial peptide 2 (cLEAP-2). The predicted amino acid sequence composed a prepropeptide, and the active peptide contained four conserved cysteine amino acids. The gene was localized to chromosome 13, and analysis of the genome revealed three exons separated by two introns. The cLEAP-2 gene was expressed in a number of chicken epithelial tissues including the small intestine, liver, lung, and kidney. Northern analysis identified liver-specific cLEAP-2 splice variants, suggesting some degree of tissue-specific regulation. To investigate whether cLEAP-2 expression was constitutive or induced in response to microbial infection, 4-day-old birds were orally infected with Salmonella . Analyses of cLEAP-2 expression by semiquantitative reverse transcription-PCR indicated that cLEAP-2 mRNA was upregulated significantly in the small intestinal tissues and the liver, indicative of direct and systemic responses. The antimicrobial activity of cLEAP-2 against Salmonella was analyzed in vitro with a time-kill assay and recombinant cLEAP-2. Interestingly Salmonella enterica serovar Typhimurium SL1344 showed increased susceptibility to the active cationic peptide (amino acids 37 to 76) compared to S. enterica serovar Typhimurium C5 and Salmonella enteritidis . Taken together, these data suggest that cationic cLEAP-2 is part of the innate host defense mechanisms of the chicken.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3