Development of an Intranasal Vaccine To Prevent Urinary Tract Infection by Proteus mirabilis

Author:

Li Xin1,Lockatell C. Virginia2,Johnson David E.2,Lane M. Chelsea1,Warren John W.3,Mobley Harry L. T.1

Affiliation:

1. Department of Microbiology and Immunology

2. Division of Research Service, Veterans Administration Medical Center, Baltimore, Maryland 21201

3. Division of Infectious Diseases, Department of Medicine, University of Maryland School of Medicine

Abstract

ABSTRACT Proteus mirabilis commonly infects the complicated urinary tract and is associated with urolithiasis. Stone formation is caused by bacterial urease, which hydrolyzes urea to ammonia, causing local pH to rise, and leads to the subsequent precipitation of magnesium ammonium phosphate (struvite) and calcium phosphate (apatite) crystals. To prevent these infections, we vaccinated CBA mice with formalin-killed bacteria or purified mannose-resistant, Proteus -like (MR/P) fimbriae, a surface antigen expressed by P. mirabilis during experimental urinary tract infection, via four routes of immunization: subcutaneous, intranasal, transurethral, and oral. We assessed the efficacy of vaccination using the CBA mouse model of ascending urinary tract infection. Subcutaneous or intranasal immunization with formalin-killed bacteria and intranasal or transurethral immunization with purified MR/P fimbriae significantly protected CBA mice from ascending urinary tract infection by P. mirabilis ( P < 0.05). To investigate the potential of MrpH, the MR/P fimbrial tip adhesin, as a vaccine, the mature MrpH peptide (residues 23 to 275, excluding the signal peptide), and the N-terminal receptor-binding domain of MrpH (residues 23 to 157) were overexpressed as C-terminal fusions to maltose-binding protein (MBP) and purified on amylose resins. Intranasal immunization of CBA mice with MBP-MrpH (residues 23 to 157) conferred effective protection against urinary tract infection by P. mirabilis ( P < 0.002).

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3