Affiliation:
1. Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
Abstract
ABSTRACT
Bacteriophage GA-1 infects
Bacillus
sp. strain G1R and has a linear double-stranded DNA genome with a terminal protein covalently linked to its 5′ ends. GA-1 protein p6 is very abundant in infected cells and binds DNA with no sequence specificity. We show here that it binds in vivo to the whole viral genome, as detected by cross-linking, chromatin immunoprecipitation, and real-time PCR analyses, and has the characteristics of a histone-like protein. Binding to DNA of GA-1 protein p6 shows little supercoiling dependency, in contrast to the ortholog protein of the evolutionary related
Bacillus subtilis
phage φ29. This feature is a property of the protein rather than the DNA or the cellular background, since φ29 protein p6 shows supercoiling-dependent binding to GA-1 DNA in
Bacillus
sp. strain G1R. GA-1 DNA replication is impaired in the presence of the gyrase inhibitors novobiocin and nalidixic acid, which indicates that, although noncovalently closed, the viral genome is topologically constrained in vivo. GA-1 protein p6 is also able to bind φ29 DNA in
B. subtilis
cells; however, as expected, the binding is less supercoiling dependent than the one observed with the φ29 protein p6. In addition, the nucleoprotein complex formed is not functional, since it is not able to transcomplement the DNA replication deficiency of a φ29
sus6
mutant. Furthermore, we took advantage of φ29 protein p6 binding to GA-1 DNA to find that the viral DNA ejection mechanism seems to take place, as in the case of φ29, with a right to left polarity in a two-step, push-pull process.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献