Affiliation:
1. Junior Research Group of Microbial Biochemistry and Physiology and
2. Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
Abstract
ABSTRACT
Aspergillus fumigatus
is the main cause of severe invasive aspergillosis. To combat this life-threatening infection, only limited numbers of antifungals are available. The fungal α-aminoadipate pathway, which is essential for lysine biosynthesis, has been suggested as a potential antifungal drug target. Here we reanalyzed the role of this pathway for establishment of invasive aspergillosis in murine models. We selected the first pathway-specific enzyme, homocitrate synthase (HcsA), for biochemical characterization and for study of its role in virulence.
A. fumigatus
HcsA was specific for the substrates acetyl-coenzyme A (acetyl-CoA) and α-ketoglutarate, and its activity was independent of any metal ions. In contrast to the case for other homocitrate synthases, enzymatic activity was hardly affected by lysine and gene expression increased under conditions of lysine supplementation. An
hcsA
deletion mutant was lysine auxotrophic and unable to germinate on unhydrolyzed proteins given as a sole nutrient source. However, the addition of partially purified
A. fumigatus
proteases restored growth, confirming the importance of free lysine to complement auxotrophy. In contrast to lysine-auxotrophic mutants from other fungal species, the mutant grew on blood and serum, indicating the existence of high-affinity lysine uptake systems. In agreement, although the virulence of the mutant was strongly attenuated in murine models of bronchopulmonary aspergillosis, virulence was partially restored by lysine supplementation via the drinking water. Additionally, in contrast to the case for attenuated pulmonary infections, the mutant retained full virulence when injected intravenously. Therefore, we concluded that inhibition of fungal lysine biosynthesis, at least for disseminating invasive aspergillosis, does not appear to provide a suitable target for new antifungals.
Publisher
American Society for Microbiology
Subject
Molecular Biology,General Medicine,Microbiology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献