Metschnikowia Strains Isolated from Botrytized Grapes Antagonize Fungal and Bacterial Growth by Iron Depletion

Author:

Sipiczki Matthias1

Affiliation:

1. Department of Genetics, University of Debrecen, P.O. Box 56, H-4010 Debrecen, Hungary, and Research Group of Microbial Developmental Genetics, Hungarian Academy of Sciences, P.O. Box 56, H-4010 Debrecen, Hungary

Abstract

ABSTRACT Noble-rotted grapes are colonized by complex microbial populations. I isolated pigment-producing Metschnikowia strains from noble-rotted grapes that had antagonistic activity against filamentous fungi, yeasts, and bacteria. A red-maroon pigment was formed from a diffusible colorless precursor released by the cells into the medium. The conversion of the precursor required iron and could occur both in the cells (red colonies) and in the medium (red halos around colonies). The intensity of pigmentation was correlated with the intensity of the antimicrobial activity. Mutants that did not form pigment also lacked antifungal activity. Within the pigmented halos, conidia of the sensitive fungi did not germinate, and their hyphae did not grow and frequently lysed at the tips. Supplementation of the medium with iron reduced the size of the halos and the inhibition zones, while it increased the pigment accumulation by the colonies. The iron-binding agent tropolone had a similar effect, so I hypothesize that pigmented Metschnikowia isolates inhibit the growth of the sensitive microorganisms by pigment formation, which depletes the free iron in the medium. As the pigment is a large nondiffusible complex produced in the presence of both low and high concentrations of ferric ions, the proposed mechanism is different from the mechanisms operating in microbes that release siderophores into the environment for iron acquisition.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3