Expression of cytochrome o in hydrogen uptake constitutive mutants of Rhizobium japonicum

Author:

O'Brian M R,Maier R J

Abstract

Mutant strains of Rhizobium japonicum constitutive for H2 uptake activity (Hupc) contained significantly more membrane-bound b-type cytochrome than did the wild type when grown heterotrophically. The Hupc strains contained approximately three times more dithionite- and NADH-reducible CO-reactive b-type cytochrome than did the wild type; the absorption features of the CO spectra were characteristic of cytochrome o. This component, designated cytochrome b', was not reduced by NADH in the presence of cyanide. Cytochrome o from the wild type (SR) and cytochrome b' from mutants SR476 and SR481 bound to CO with similar dissociation constants of 5.4, 7.4, and 5.6 microM, respectively. NADH-dependent reduction of cytochrome b' from SR476 and SR481 and the cytochrome o from SR followed pseudo-first-order kinetics with similar rate constants. Based on these spectral, ligand-binding, and kinetic measurements, it was concluded that cytochrome b' expressed by the Hupc mutants is equivalent to cytochrome o found in the wild type. H2, NADH, and succinate each reduced the same amount of total b-type cytochrome in membranes from SR481, and the rate of H2-dependent cytochrome o reduction was significantly less than with succinate or NADH as the reductants. It was concluded that neither cytochrome o nor any b-type cytochrome expressed by the Hupc mutants was unique to the H2 oxidation system. At low O2 concentrations, the inhibition of H2 and NADH oxidase activities by CO closely paralleled the binding of CO to cytochrome o rather than cytochromes a3 or c'. This suggested that NADH and H2 oxidation involved primarily cytochrome o as the terminal oxidase at low O2 tensions.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3