An A/U-Rich Enhancer Region Is Required for High-Level Protein Secretion through the HlyA Type I Secretion System

Author:

Khosa Sakshi1,Scholz Romy1,Schwarz Christian1,Trilling Mirko2,Hengel Hartmut3,Jaeger Karl-Erich45,Smits Sander H. J.1,Schmitt Lutz1

Affiliation:

1. Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

2. Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany

3. Institute of Virology, University Medical Center, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany

4. Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

5. Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich, Jülich, Germany

Abstract

ABSTRACT Efficient protein secretion is often a valuable alternative to classic cellular expression to obtain homogenous protein samples. Early on, bacterial type I secretion systems (T1SS) were employed to allow heterologous secretion of fusion proteins. However, this approach was not fully exploited, as many proteins could not be secreted at all or only at low levels. Here, we present an engineered microbial secretion system which allows the effective production of proteins up to a molecular mass of 88 kDa. This system is based on the hemolysin A (HlyA) T1SS of the Gram-negative bacterium Escherichia coli , which exports polypeptides when fused to a hemolysin secretion signal. We identified an A/U-rich enhancer region upstream of hlyA required for effective expression and secretion of selected heterologous proteins irrespective of their prokaryotic, viral, or eukaryotic origin. We further demonstrate that the ribosomal protein S1 binds to the hlyA A/U-rich enhancer region and that this region is involved in the high yields of secretion of functional proteins, like maltose-binding protein or human interferon alpha-2. IMPORTANCE A 5′ untranslated region of the mRNA of substrates of type I secretion systems (T1SS) drastically enhanced the secretion efficiency of the endogenously secreted protein. The identification of ribosomal protein S1 as the interaction partner of this 5′ untranslated region provides a rationale for the enhancement. This strategy furthermore can be transferred to fusion proteins allowing a broader, and eventually a more general, application of this system for secreting heterologous fusion proteins.

Funder

State of North Rhine-Westphalia

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3