Transport of branched-chain amino acids in membrane vesicles of Streptococcus cremoris

Author:

Driessen A J1,de Jong S1,Konings W N1

Affiliation:

1. Department of Microbiology, University of Groningen, Haren, The Netherlands.

Abstract

The kinetics, specificity, and mechanism of branched-chain amino acid transport in Streptococcus cremoris were studied in a membrane system of S. cremoris in which beef heart mitochondrial cytochrome c oxidase was incorporated as a proton motive force (delta p)-generating system. Influx of L-leucine, L-isoleucine, and L-valine can occur via a common transport system which is highly selective for the L-isomers of branched chain amino acids and analogs. The pH dependency of the kinetic constants of delta p-driven L-leucine transport and exchange (counterflow) was determined. The maximal rate of delta p-driven transport of L-leucine (Vmax) increased with increasing internal pH, whereas the affinity constant increased with increasing external pH. The affinity constant for exchange (counterflow) varied in a similar fashion with pH, whereas Vmax was pH independent. Further analysis of the pH dependency of various modes of facilitated diffusion, i.e., efflux, exchange, influx, and counterflow, suggests that H+ and L-leucine binding and release to and from the carrier proceed by an ordered mechanism. A kinetic scheme of the translocation cycle of H+-L-leucine cotransport is suggested.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3