Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research

Author:

Anahtar Melis N.1ORCID,Yang Jason H.23ORCID,Kanjilal Sanjat45ORCID

Affiliation:

1. Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA

2. Center for Emerging Pathogens, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA

3. Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA

4. Department of Population Medicine, Harvard Medical School & Harvard Pilgrim Healthcare Institute, Boston, Massachusetts, USA

5. Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, USA

Abstract

Antimicrobial resistance (AMR) remains one of the most challenging phenomena of modern medicine. Machine learning (ML) is a subfield of artificial intelligence that focuses on the development of algorithms that learn how to accurately predict outcome variables using large sets of predictor variables that are typically not hand selected and are minimally curated.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Harvard Catalyst

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference86 articles.

1. Centers for Disease Control and Prevention. 2019. Antibiotic resistance threats in the United States 2019. Centers for Disease Control and Prevention Atlanta GA.

2. O’Neill J. 2016. Tackling drug-resistant infections globally: final report and recommendations. Analysis and Policy Observatory Hawthorn Australia. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf.

3. Burkov A. 2019. The hundred-page machine learning book. Andriy Burkov.

4. Statistics versus machine learning

5. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3