Astrocytes derived from p53-deficient mice provide a multistep in vitro model for development of malignant gliomas

Author:

Yahanda A M1,Bruner J M1,Donehower L A1,Morrison R S1

Affiliation:

1. Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, USA.

Abstract

Loss or mutation of p53 is thought to be an early event in the malignant transformation of many human astrocytic tumors. To better understand the role of p53 in their growth and transformation, we developed a model employing cultured neonatal astrocytes derived from mice deficient in one (p53 +/-) or both (p53 -/-) p53 alleles, comparing them with wild-type (p53 +/+) cells. Studies of in vitro and in vivo growth and transformation were performed, and flow cytometry and karyotyping were used to correlate changes in growth with genomic instability. Early-passage (EP) p53 -/- astrocytes achieved higher saturation densities and had more rapid growth than EP p53 +/- and +/+ cells. The EP p53 -/- cells were not transformed, as they were unable to grow in serum-free medium or in nude mice. With continued passaging, p53 -/- cells exhibited a multistep progression to a transformed phenotype. Late-passage p53 -/- cells achieved saturation densities 50 times higher than those of p53 +/+ cells and formed large, well-vascularized tumors in nude mice. p53 +/- astrocytes exhibited early loss of the remaining wild-type p53 allele and then evolved in a manner phenotypically similar to p53 -/- astrocytes. In marked contrast, astrocytes retaining both wild-type p53 alleles never exhibited a transformed phenotype and usually senesced after 7 to 10 passages. Dramatic alterations in ploidy and karyotype occurred and were restricted to cells deficient in wild-type p53 following repeated passaging. The results of these studies suggest that loss of wild-type p53 function promotes genomic instability, accelerated growth, and malignant transformation in astrocytes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference53 articles.

1. Suppression of human colorectal carcinoma cell growth by wild-type p53;Baker S. J.;Science,1990

2. Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas;Bigner D. D.;J. Neuropathol. & Exp. Neurol.,1981

3. Patterns of the early, gross chromosomal changes in malignant human gliomas;Bigner S. H.;Hereditas,1984

4. Antigen variation in a human glioblastoma: from the primary tumor to the second recurrence, permanent cell line and xenotransplantation tumors;Bilzer T.;Anticancer Res.,1991

5. Pattern of mutant p53 expression in human astrocytomas suggests the existence of alternate pathways of tumorigenesis;Chozick B. S.;Cancer,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3