Adenovirus type 2 preferentially stimulates polymerase III transcription of Alu elements by relieving repression: a potential role for chromatin

Author:

Russanova V R1,Driscoll C T1,Howard B H1

Affiliation:

1. Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.

Abstract

The number of Alu transcripts that accumulate in HeLa and other human cells is normally very low; however, infection with adenovirus type 5 increases the expression of Alu elements dramatically, indicating that the potential for polymerase III (pol III)-dependent Alu transcription in vivo is far greater than generally observed (B. Panning and J.R. Smiley, Mol. Cell. Biol. 13:3231-3244, 1993). In this study, we employed nuclear run-on in combination with a novel RNase H-based assay to investigate transcription from uninfected and adenovirus type 2-infected nuclei, as well as genomic DNAs from uninfected and infected cells. When performed in the presence of excess uninfected nuclear extract, such assays revealed that (i) the vast majority of transcriptionally competent Alu elements in nuclei are masked from the pol III transcriptional machinery and (ii) the induction of Alu expression upon adenovirus infection can be largely accounted for by an increased availability of these elements to the pol III transcription machinery. We also investigated the role of H1 histone for silencing of Alu genes and, in comparison, mouse B2 repetitive elements. Depletion of H1 led to an approximately 17-fold activation of B2 repetitive elements but did not change Alu transcription relative to that of constitutively expressed 5S rRNA genes. These results are consistent with the view that Alu repeats are efficiently sequestered by chromatin proteins, that such masking cannot be accounted for by nonspecific H1-dependent repression, and that adenovirus infection at least partially overrides the repressive mechanism(s).

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3