Author:
Clerc P L,Ryter A,Mounier J,Sansonetti P J
Abstract
In Shigella flexneri a 220-kilobase plasmid encodes the ability to invade nonprofessional phagocytes by a mechanism similar to phagocytosis. In this report, the continuous macrophage cell line J774 was used to study the intracellular fate of both invasive and noninvasive strains. pWR100, the virulence plasmid of S. flexneri serotype 5, mediated very efficient and rapid killing of J774 macrophages, as measured by cellular detachment and uptake of trypan blue. For this to occur, the bacteria had to be within the cells, since the macrophages were protected by cytochalasin D. A battery of strains differing in their levels of Shiga toxin production showed that inhibition of protein synthesis by Shiga toxin, as measured by [35S]methionine incorporation into infected macrophages, was not required for early killing of cells. Damage to J774 macrophages rather correlated with the ability of invasive bacteria to rapidly and efficiently lyse the membrane of the phagocytic vacuole. The role of the release of bacteria within the cytosol for subsequent expression of cytotoxic activity is discussed, and mitochondria are proposed as a potential target for this activity.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献