Investigation of the Role of CD8 + T Cells in Bovine Tuberculosis In Vivo

Author:

Villarreal-Ramos B.1,McAulay M.1,Chance V.1,Martin M.1,Morgan J.1,Howard C. J.1

Affiliation:

1. Institute for Animal Health, Compton, Berks RG20 7NN, United Kingdom

Abstract

ABSTRACT Mycobacterium bovis is the causative agent of bovine tuberculosis (TB), and it has the potential to induce disease in humans. CD8 + T cells (CD8 cells) have been shown to respond to mycobacterial antigens in humans, cattle, and mice. In mice, CD8 cells have been shown to play a role in protection against mycobacterial infection. To determine the role of CD8 cells in bovine TB in vivo, two groups of calves were infected with the virulent M. bovis strain AF2122/97. After infection, one group was injected with a CD8 cell-depleting monoclonal antibody (MAb), and the other group was injected with an isotype control MAb. Immune responses to mycobacterial antigens were measured weekly in vitro. After 8 weeks, the animals were killed, and postmortem examinations were carried out. In vitro proliferation responses were similar in both calf groups, but in vitro gamma interferon (IFN-γ) production in 24-h whole-blood cultures was significantly higher in control cattle than in CD8 cell-depleted calves. Postmortem examination showed that calves in both groups had developed comparable TB lesions in the lower respiratory tract and associated lymph nodes. Head lymph node lesion scores, on the other hand, were higher in control calves than in CD8 cell-depleted calves. Furthermore, there was significant correlation between the level of IFN-γ and the head lymph node lesion score. These experiments indicate that CD8 cells play a role in the immune response to M. bovis in cattle by contributing to the IFN-γ response. However, CD8 cells may also play a deleterious role by contributing to the immunopathology of bovine TB.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference58 articles.

1. Beschin, A., L. Brijs, P. De Baetselier, and C. Cocito. 1991. Mycobacterial proliferation in macrophages is prevented by incubation with lymphocytes activated in vitro with a mycobacterial antigen complex. Eur. J. Immunol.21:793-797.

2. Bonecini-Almeida, M. G., S. Chitale, I. Boutsikakis, J. Geng, H. Doo, S. He, and J. L. Ho. 1998. Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: requirement for IFN-γ and primed lymphocytes. J. Immunol.160:4490-4499.

3. Buddle, B. M., G. W. de Lisle, A. Pfeffer, and F. E. Aldwell. 1995. Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine13:1123-1130.

4. Canaday, D. H., C. Ziebold, E. H. Noss, K. A. Chervenak, C. V. Harding, and W. H. Boom. 1999. Activation of human CD8+ TCR+ cells by Mycobacterium tuberculosis via an alternate class I MHC antigen-processing pathway. J. Immunol.162:372-379.

5. Carpenter, E., L. Fray, and E. Gormley. 1997. Cellular responses and Mycobacterium bovis BCG growth inhibition by bovine lymphocytes. Immunol. Cell Biol.75:554-560.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3