Affiliation:
1. Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
Abstract
ABSTRACT
Real-time quantitative PCR is used routinely for the high-throughput diagnosis of viral pathogens, such as West Nile virus (WNV). Rapidly evolving RNA viruses present a challenge for diagnosis because they accumulate mutations that may render them undetectable. To explore the effect of sequence variations on assay performance, we generated every possible single point mutation within the target region of the widely used TaqMan assay for WNV and found that the TaqMan assay failed to detect 47% of possible single nucleotide variations in the probe-binding site and was unable to detect any targets with more than two mutations. In response, we developed and validated a less expensive assay with the intercalating dye SYBR green. The SYBR green-based assay was as sensitive as the TaqMan assay for WNV. Importantly, it detected 100% of possible WNV target region variants. The assay developed here adds an additional layer of protection to guard against false-negative results that result from natural variations or drug-directed selection and provides a rapid means to identify such variants for subsequent detailed analysis.
Publisher
American Society for Microbiology
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献